Five Dimensional Rotating Black Hole in a Uniform Magnetic Field: The Gyromagnetic Ratio

نویسندگان

  • A. N. Aliev
  • Feza Gürsey
  • Valeri P. Frolov
چکیده

Abstract In four dimensional general relativity, the fact that a Killing vector in a vacuum spacetime serves as a vector potential for a test Maxwell field provides one with an elegant way of describing the behaviour of electromagnetic fields near a rotating Kerr black hole immersed in a uniform magnetic field. We use a similar approach to examine the case of a five dimensional rotating black hole placed in a uniform magnetic field of configuration with bi-azimuthal symmetry, that is aligned with the angular momenta of the Myers-Perry spacetime. Assuming that the black hole may also possess a small electric charge we construct the 5-vector potential of the electromagnetic field in the Myers-Perry metric using its three commuting Killing vector fields. We show that, like its four dimensional counterparts, the five dimensional Myers-Perry black hole rotating in a uniform magnetic field produces an inductive potential difference between the event horizon and an infinitely distant surface. This potential difference is determined by a superposition of two independent Coulomb fields consistent with the two angular momenta of the black hole and two nonvanishing components of the magnetic field. We also show that a weakly charged rotating black hole in five dimensions possesses two independent magnetic dipole moments specified in terms of its electric charge, mass, and angular momentum parameters. We prove that a five dimensional weakly charged Myers-Perry black hole must have the value of the gyromagnetic ratio g = 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Black Hole Solutions in Heterotic String Theory on a Torus

We construct the general electrically charged, rotating black hole solution in the heterotic string theory compactified on a six dimensional torus and study its classical properties. This black hole is characterized by its mass, angular momentum, and a 28 dimensional electric charge vector. We recover the axion-dilaton black holes and Kaluza-Klein black holes for special values of the charge ve...

متن کامل

ar X iv : h ep - t h / 96 06 06 9 v 1 1 2 Ju n 19 96 UAHEP 958 New Perturbative Solutions of the Kerr – Newman Dilatonic Black Hole Field Equations

This work describes new perturbative solutions to the classical, four-dimensional Kerr–Newman dilaton black hole field equations. Our solutions do not require the black hole to be slowly rotating. The unperturbed solution is taken to be the ordinary Kerr solution, and the perturbation parameter is effectively the square of the charge-to-mass ratio (Q/M) 2 of the Kerr–Newman black hole. We have ...

متن کامل

Magneto-Thermo-Elastic Stresses and Perturbation of Magnetic Field Vector in a Thin Functionally Graded Rotating Disk

In this paper, a semi-analytical solution for magneto-thermo-elastic problem in an axisymmetric functionally graded (FG) hollow rotating disk with constant thickness placed in uniform magnetic and thermal fields with heat convection from disk’s surfaces is presented. Solution for stresses and perturbation of magnetic field vector in a thin FG rotating disk is determined using infinitesimal theo...

متن کامل

Motion of charged particles around a rotating black hole in a magnetic field

We study the effects of an external magnetic field, which is assumed to be uniform at infinity, on the marginally stable circular motion of charged particles in the equatorial plane of a rotating black hole. We show that the magnetic field has its greatest effect in enlarging the region of stability towards the event horizon of the black hole. Using the Hamilton-Jacobi formalism we obtain the b...

متن کامل

Quantum Radiation from a 5-Dimensional Rotating Black Hole

Abstract We study a massless scalar field propagating in the background of a five-dimensional rotating black hole. We showed that in the Myers-Perry metric describing such a black hole the massless field equation allows the separation of variables. The obtained angular equation is a generalization of the equation for spheroidal functions. The radial equation is similar to the radial Teukolsky e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005